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4 [2.05,3, 5].-LOTHAR COLLATZ & WOLFGANG WETTERLING, Optimierungsaufgaben, 
Springer-Verlag, Berlin, 1966, ix + 181 pp., 21 cm. Price DM 10.80. 

This book provides a clear and readable introduction into the fundamental prin- 
ciples of linear and convex programming, as well as the theory of matrix games. 
These principles provide a framework for a theory of Chebyshev approximations 
with applications to elliptic differential equations. This part of the book should be 
of particular interest. The difficult problems connected with the minimization of 
convex functions without constraints are not touched. 

C. WITZGALL 

Boeing Scientific Research Laboratories 
Seattle, Washington 98124 

5 [2.05].-MIECZYSLAW WARMUS, Tables of Lagrange Coefficients for Quadratic In- 
terpolations, Polish Scientific Publishers, Warsaw, 1966, ix + 501 pp., 30 cm. 
Price Zl 180. 

This volume, the second in a series of mathematical tables prepared at the Com- 
puting Centre of the Polish Academy of Sciences, gives values of the Lagrange 
interpolation coefficients L-1(t) = -t(1 - t)/2, Li(t) = t(1 + t)/2 to liD; and 
Lo(t) = 1 - t2 to lOD, all for t = 0(0.00001)1. 

These tables are arranged in a condensed form, using the relations L1(l - t) = 

Lj(t), Lo(1 - t) = Lo(t), and Lj(1 - t) = L-1(t). 
Herein the argument-interval is one-tenth that of the previously largest similar 

table [1] and two more decimal places appear in each of the tabular entries. 
The author points out in the preface that these tables provide an easy method 

of calculating the value of a function corresponding to an argument given to k + 5 
decimal places from tabular values for arguments given to k decimal places, and 
he illustrates this with a single numerical example, which includes an estimate of 
the error arising from such interpolation. 

The procedure followed in the calculation of these tables is not discussed, and 
no bibliography of earlier tables is given. 

It seems appropriate to this reviewer to mention here the equally voluminous, 
unpublished 8D tables of Salzer & Richards [2] for quadratic and cubic interpola- 
tion by the Gregory-Newton and Everett formulas. 

J. W. W. 
1. NYMTP, Tables of Lagrangian Interpolation Coefficients, Columbia Univ., New York, 1944. 

(See MTAC, v. 1, 1943-1945, pp. 314-315, RMT 162.) 
2. HERBERT E. SALZER & CHARLES H. RICHARDS, Tables for Non-linear Interpolation, 1961. 

Copy deposited in UMT file. (See Math. Comp., v. 16, 1962, p. 379, RMT 31.) 

6 [2.10,3,6, 7].-R. E. BELLMAN, R. E. KALABA & J. LOCKETT, Numerical Inversion 
of the Laplace Transform, American Elsevier Publishing Co., Inc., New York, 
1966, viii + 249 pp., 24 cm. Price $9.50. 

In numerous applied problems, characterized by ordinary differential equations, 
difference-differential equations, partial differential equations or other functional 
equations, the Laplace transform is often a powerful tool for obtaining a solution. 
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When the Laplace transform approach is applicable, getting the Laplace transform 
of the solution is relatively easy. The major problem is inverting the transform. It 
is often the case that closed-form representations in terms of tabulated functions 
for the inverse are not known, and so one must resort to numerical methods. 

A comprehensive volume on the numerical inversion of Laplace transforms re- 
plete with examples would fill an important gap in the literature. Although the vol- 
ume under review has much which is commendable, it is not comprehensive in its 
coverage, as the authors seem completely unaware of important segments of the lit- 
erature. We return to this point later, but first we explore the contents of the vol- 
ume and present a generalization of the basic tool used by the authors. 

Consider 

co (1) h (p) = f etf (t)dt 

which we assume exists. Given h(p) the Laplace transform of f(t), the problem is 
to find f(t). Elementary properties of h(p) are treated in Chapter 1 and its numerical 
inversion is considered in Chapter 2. The volume is centered around a procedure 
which treats (1) as an integral equation. This is a useful approach since the tech- 
niques are applicable to the solution of linear integral equations of the form 

rb 

(2) u(x) = f(x) + f k(x, y)u(y)dy. 

The idea is to approximate the integral in (1) by a quadrature formula and then 
find approximate values of f(t) by solving a system of linear equations. By ap- 
propriate choice of a quadrature formula, the solution can be expressed in a neat 
form without actually having to solve the system of linear equations in the usual 
sense. In (1), put 

(3) x=e-vt v>O, yt= -lnx, 

so that 

(4) vh(p) = f x(P/V)-lf(t)dx. 

From the theory of orthogonal functions [1], we have 

n 
(5) h(p) = wjXj(P: )-1Z(xj) + Fn7t 

j=l 

where 

Wi= F(n + a+ 1)Pr(n+6+ 1) a Jil?0 L 

(6) n!r(n + X)xj+l(-1 _ X)a+lv[Rn(a ?(x)]2' 

R( (a, j) (X) =0 
, x = ,tj Z(xj) = f(tj) X 

where Fn is a remainder term and R.(a, )(x) is the shifted Jacobi polynomial, i.e., 
Rn(a,?(x) = Pn(a )(2x - 1). Let p take on n distinct values and put F. = 0. 
Then (4) gives rise to n equations in n unknowns. By a judicious choice of the p 
values, the solution of the linear equation system with Fn = 0 is easily constructed. 
With 
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(7) p/v = k + l , k = O, , 1 ... n-1 , 

ak = h(v[k + 1]), wjz(xj) = 

the linear equation system to solve is 

n 
(8) x;jy = ak 

j=1 

It can be shown that 

n-1 

wjz(xj) = E akqk,j, 

(9) 
k=O 

n_1 k Rna,) (X) 
E2 qk,,X (X - Rn( ~ (x;) 

kJc=O (x - xj)Rn(a~(j 

The authors treat the case a = = 0 only, in which event Pn ( OO) (x) is the Legendre 
polynomial. To facilitate use of the formulas, tables of xj, Rn(? 0)'(x;) and qk,j are 
provided for n = 3(1)15 to 17S, of which the first 15 figures are believed to be 
correct. 

Observe that in the above general development, the parameters v, a and ,B are 
free, and ideally this should be exploited to smooth out irregularities in the be- 
havior of the functions involved and so improve the efficiency of the inversion 
process. This points up a shortcoming in the analysis, since for each choice of a and 
f3 tables of xj, Rn(a, ?`(xj) and qk,j must be prepared. Use of the Chebyshev poly- 
nomials Tn*(x) and Un*(x) (except for normalization constants, these are the cases 
a! = f = -2 ~and a = = 4, respectively) would shorten some of the computa- 
tional effort, since the zeros xj and weights wj are easily expressed. Of course, other 
orthogonal polynomials with weights chosen to reflect singularities could also be 
used. 

Several examples are treated in Chapters 3 and 4 to show that the procedure 
for a = ,B = 0 can lead to satisfactory results. A number of examples are also de- 
veloped to show how the ideas may be extended to solve other functional equations, 
both linear and nonlinear. It is a virtue of the volume that it warns the reader that 
there is no panacea and that pitfalls abound. The point is this. If (8) is expressed 
in matrix form as Ay = b, A-', of course, is known from (9). However, there may 
be serious difficulties as the matrix A is ill-conditioned. Thus A-lb may be mean- 
ingless unless b is known to high accuracy. Chapter 5 studies applications of dy- 
namic programming techniques for the solution of ill-conditioned systems. It would 
be interesting to know if the detrimental effects of ill-conditioning can be removed 
or mitigated by use of other choices of a and ,B. 

An appendix lists some FORTRAN IV programs for "The Heat Equations," 
"Routing Problem" and "Adaptive Computation." These pages are a total loss, as 
I do not find any information as to which specific problems the programs apply. 

I now return to the statement made earlier concerning material which deserves 
a place in a comprehensive treatment on the inversion of transforms. We divide 
our discussion, which is necessarily brief and by no means complete, into three parts. 

First, there are two important papers by A. Erdelyi [2], [3]. There it is shown 
that if f(t) in (4) is expanded in a series of the Jacobi polynomials Rn(a, )(t), then 
the coefficients in this expansion, call them an, can be expressed as a finite sum of 
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n + 1 terms, each of which depends on a different value of h(p). Notice that this 
procedure yields a continuous-type approximation as opposed to the discrete-type 
approximation described by [2]-[9]. Attention should also be called to papers by 
Tricomi [4], who got a continuous-type approximation based on Laguerre poly- 
nomials. 

In the above approaches, the problem is viewed as that of solving an integral 
equation. As the inverse Laplace transform has an integral representation, it is 
natural to seek the inverse transform by a direct quadrature. Examples of this ap- 
proach are given in three papers by Salzer [5], [6], [7]. 

Finally, we note a valuable technique which is slightly touched upon by the 
authors. However, no references to the literature are given. The idea is to approxi- 
mate h(p) by the ratio of two polynomials and then invert this approximation in 
the usual fashion. Only a few examples of this approach are known; see the papers 
by Luke [8]-[10] and a paper by Fair [11]. In each instance the accuracy of the re- 
sults is quite remarkable. Furthermore, the approximation for f(t) is a sum of ex- 
ponentials. This is especially valuable in numerous problems where integrals and 
other expressions involving f(t) are required. 

Y. L. I. 
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10. Y. L. LUKE, "Approximate inversion of a class of Laplace transforms applicable to super- 
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7 [2.35, 4, 5, 6, 13.15J.-Yu. V. VOROBYEV, Method of Moments in Applied Mathe- 
matics, translated from Russian by B. SECKLER, Gordon and Breach Science 
Publishers, New York, 1965, x + 165 pp., 23 cm. Price $12.50. 

This monograph presents a study with applications of the method of moments 
for the approximate solution of functional equations in Hilbert spaces involving 
(mostly completely continuous and self-adjoint bounded) linear operators. The 
method is based on a variational principle and is closely related to the Chebyshev- 
Markov classical problem of moments. The representation of the approximate op- 
erators constructed in the method of moments shows that the author's method falls 
within the general framework of the projection or the abstract Ritz-Galerkin meth- 
od. It diff ers merely in the choice of the projections, that is, the method of moments 
gives a specific and very often a useful way of determining the coordinate elements 


